

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-confit 0.7.dev0 documentation

django-confit

django-confit eases Django configuration management.

As a Django user, in order to configure a project:

	django-confit helps you load the settings wherever they are, whatever the
format: Python modules, environment variables, JSON, YAML...

	django-confit validates the settings, i.e. it tells you if some directive
is missing, has wrong format...

As a Django library developer, in order to help your application’s users:

	you write configuration schemas for your application, using django-confit‘s
toolkit and conventions.

	django-confit helps you document your application’s specific
configuration.

As a non Django user, in order to deploy and run a Django-powered project:

	you write the configuration as you like, depending on your workflow and your
provisioning toolkit. You know the project can load them using
django-confit.

	you expect applications to validate the configuration before they actually
use it, and report errors with a readable output.

Example

In a project’s settings.py file, let’s load configuration from various
locations:

import os

import django_confit

Load settings.
raw_settings = {}
raw_settings.update(django_confit.load_module('myproject.default_settings'))
raw_settings.update(django_confit.load_file(open('/etc/myproject.json')))
raw_settings.update(django_confit.load_mapping(os.environ, prefix='MYPROJECT_')

Update globals, because that's the way Django uses DJANGO_SETTINGS_MODULE.
globals().update(raw_settings)

Optionally, you can use builtin schemas to validate settings:

Validate and clean settings.
cleaned_settings = django_confit.validate_settings(raw_settings)

Update globals, because that's the way Django uses DJANGO_SETTINGS_MODULE.
globals().update(cleaned_settings)

Warning

At the moment, there is no builtin schema for latest Django>=1.7.

Project status

Today, django-confit is a proof of concept:

	loading settings is nice and easy.

	validating configuration is easy... provided you have the schemas.

	creating configuration schemas is verbose. It uses colander [https://pypi.python.org/pypi/colander/] [1] which has nice
features, but may not be the definitive option.

	generating documentation from schemas is not implemented.

The main limitation is that, when you use validation, schemas are
mandatory. If some configuration directive is not registered in a schema, it
will not be present in validation output. It means that, if you install a new
third-party Django application, you need the configuration schema for this
application, else its settings will not pass validation. So the most-wanted
contribution is submitting configuration schemas for third-party
applications.

Notice that this behaviour is a wanted feature. As django-confit author, I
think libraries should always provide a schema for the settings they use.
I do not pretend django-confit should be THE answer. I just bet that, if
schemas were widely adopted by the Django community, configuration would be
easier to manage.

django-confit does not pretend to be the ultimate configuration management
app for Django. Its goal is to show how some issues could be resolved, and to
highlight the benefits. django-confit is a proposal. If you like its
concepts, then you can:

	use django-confit of course!

	discuss, spread the word, send feedback.

	improve code. Help around configuration schemas of third-party apps would be
appreciated.

Ressources

	Documentation: https://django-confit.readthedocs.org

	PyPI page: https://pypi.python.org/pypi/django-confit/

	Code repository: https://github.com/benoitbryon/django-confit

	Bugtracker: https://github.com/benoitbryon/django-confit/issues

	Continuous integration: https://travis-ci.org/benoitbryon/django-confit

	Roadmap: https://github.com/benoitbryon/django-confit/milestones

Contents

	Install

	Configure

	Load configuration

	Validate schemas

	Write configuration schemas

	Builtin schemas

	Demo project

	About django-confit
	Vision

	Alternatives and related projects

	License

	Authors & contributors

	Changelog

	Contributing to django-confit

Indices and tables

	Index

	Module Index

	Search Page

Notes & references

	[1]	https://pypi.python.org/pypi/colander/

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Install

django-confit is open-source, published under BSD license.
See License for details.

If you want to install a development environment, you should go to
Contributing to django-confit documentation.

Prerequisites

	Python [https://www.python.org/] [1] 2.7, 3.3, 3.4, 3.5

Warning

Django>=1.8 no longer supports Python 3.3, and Django<1.8 does not support
Python 3.5. As an example, django-confit can’t work with Django 1.7 and
Python 3.5.

As a library

In most cases, you will use django-confit as a dependency of another project
(typically a Django project or a Django application).
In such a case, you should add django-confit in your main project’s
requirements. Typically in setup.py:

from setuptools import setup

setup(
 install_requires=[
 'django-confit',
 #...
]
 # ...
)

Then when you install your main project with your favorite package manager
(like pip [https://pypi.python.org/pypi/pip/] [2]), django-confit will automatically be installed.

Standalone

You can install django-confit with your favorite Python package manager.
As an example with pip [https://pypi.python.org/pypi/pip/] [2]:

pip install django-confit

Check

Check django-confit has been installed:

python -c "import django_confit;print(django_confit.__version__)"

You should get django_confit‘s version.

Notes & references

See also

Changelog

	[1]	https://www.python.org/

	[2]	(1, 2) https://pypi.python.org/pypi/pip/

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Configure

Once django-confit is installed, let’s configure it.
This section describes directives related to django-confit in your Django
settings.

CONFIT_SCHEMAS

A dictionary of <APP>: <SCHEMA> where <APP> is in
INSTALLED_APPS and <SCHEMA> is the Python dotted path to a Schema class
(or factory).

This configuration directive is mandatory only when you need configuration
schemas that are not builtin django-confit. See also the list of
builtin schemas.

validate_settings() automatically loads schemas
from INSTALLED_APPS setting. For each <APP> in INSTALLED_APPS, it
looks for:

	CONFIT_SCHEMAS[<APP>],

	django_confit.schemas.<APP>.ConfigurationSchema.

Simple example from default settings in django-confit demo project [https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/default_settings.py] [1]:

CONFIT_SCHEMAS = {
 'django_confit_demo': 'django_confit_demo.settings_schemas'
 '.DjangoConfitDemoConfigurationSchema'
}

Note

Early versions of django_confit tried to automatically load schemas,
without having to register them:

	settings_schemas.<APP>.ConfigurationSchema in current package, to
allow local overrides

	<APP>.settings_schemas.ConfigurationSchema, to allow third-party
applications to manage their own schema.

	django_confit.schemas.<APP>.ConfigurationSchema to load
django-confit‘s builtins.

The idea was nice. But it did not work. Because while trying to import
<APP>.settings_schemas.ConfigurationSchema, if import <APP> imports
Django stuff, then a circular import can occur. That is a pain to debug and
a pain to fix.

With a registry, we import only things that are expected to work.

Notes & references

	[1]	https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/default_settings.py

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Load configuration

As a Django user, you manage configuration as you like: as Python modules,
as JSON or YAML files, as environment variables... Do whatever integrates best
with your deployment workflow and your team.

As a non Django user (such as a member of the Ops team), you may appreciate
putting configuration in configuration files or in environment variables. Not
in Python code.

This document explains how django-confit can help Django users load
configuration from various locations and formats.

load_mapping

load_module

load_file

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Validate schemas

As a Django user, once you have loaded configuration, you
want to make sure it is valid. It is a must-have feature when the configuration
comes from various locations. Or when it has been written by several users.

As a non Django user (such as a member of the Ops team, who deploys and
configure services), you do not want to be prosecuted because you made a
typo in configuration. You think applications should validate the configuration
before they actually use it, and report errors with a readable output.

This section explains how django-confit helps Django users validate
configuration.

validate_settings

Low-level API

Use deserialize() [http://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SchemaNode.deserialize] method of Colander schemas:
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html#deserialization

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Write configuration schemas

As a Django application developer, you want to expose configuration
directives. You want to make sure your application is well configured. As an
example, you appreciate to mark some directives as required, and to provide
default values for optional ones. But you do not want to re-invent the wheel
about validation.

As a Django user, you do not want to bother about application configuration
schemas. You just want it loaded when you register the application in
INSTALLED_APPS.

This sections explains how to create with django-confit.

Create settings_schemas.ConfigurationSchema

See:

	colander’s documentation [http://docs.pylonsproject.org/projects/colander] [1]

	django-confit’s builtin schemas [https://github.com/benoitbryon/django-confit/tree/master/django_confit/schemas] [2]

Simple example from custom schemas in django-confit demo project [https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/settings_schemas.py] [3]:

"""Custom configuration schema(s)."""
import colander

class DjangoConfitDemoConfigurationSchema(colander.MappingSchema):
 CONFITDEMO_HELLO = colander.SchemaNode(
 colander.String(),
 missing=colander.required,
 default='',
)

Warning

In django-confit code, you will see some hacks around versions of
applications. Yes, they are hacks. They are necessary because from the
django-confit point of view, we do not know which version of the
application is actually installed. So we have to write conditionals in order
to support them as well as possible... But it is a true pain.

Just imagine the schema lives within the third-party application
itself... As a consequence:

	one schema is enough. No need to manage concurrent schemas. The one for
the current version is enough.

	the schema is updated along the application. It is part of the
application’s release process.

	as an user, you do not have to find or write a schema for the application.
There is an official one! You install the app, you get the schema!

Register your schema

In a project or a third-party application, register schemas in
settings.CONFIT_SCHEMAS. See Configure.

In django-confit itself, make sure the schema can be loaded with
django_confit.schemas.<APP>.ConfigurationSchema.

Notes & references

	[1]	http://docs.pylonsproject.org/projects/colander

	[2]	https://github.com/benoitbryon/django-confit/tree/master/django_confit/schemas

	[3]	https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/settings_schemas.py

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Builtin schemas

Here is the list of configuration schemas implemented as part of
django-confit. They are schemas that will automatically be loaded.

	Django [https://docs.djangoproject.com/en/stable/ref/settings/] is supported

	django-debug-toolbar [http://django-debug-toolbar.readthedocs.org/en/latest/configuration.html]

	django-nose [https://pypi.python.org/pypi/django-nose/]

	django-pimpmytheme [https://pypi.python.org/pypi/django-pimpmytheme/]

	django-pipeline [http://django-pipeline.readthedocs.org/en/latest/configuration.html]

	raven [http://raven.readthedocs.org/en/latest/integrations/django.html]

Note

Maintaining schemas for third-party applications is hard! Any help would be
welcome, as an example:

	report bugs ;

	improve existing schemas (smarter validation) ;

	watch upgrades, support several versions.

If you are a library developer and you like django-confit, the best thing
you can do is to distribute your app’s schema inside your app! So that
you maintain the schema along with your application, and django-confit
does not have to deal with multiple versions (given a version of your app,
there is only one valid schema for your app, and it lives within your app).

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Demo project

Demo folder in project’s repository [https://github.com/benoitbryon/django-confit/tree/master/demo/] [1] contains a Django project to illustrate
django-confit usage.

Notes & references

	[1]	https://github.com/benoitbryon/django-confit/tree/master/demo/

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

About django-confit

This section is about django-confit project itself.

	Vision

	Alternatives and related projects
	django-configglue

	ConfigIt

	License

	Authors & contributors

	Changelog
	0.7 (unreleased)

	0.6 (2016-06-13)

	0.5 (2015-12-15)

	0.4 (2015-12-11)

	0.3 (2015-03-23)

	0.2 (2014-06-30)

	0.1 (2014-04-21)

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

 	About django-confit

Vision

django-confit has been created with the following concepts in mind:

	Local configuration should not live in code. Altering sys.path or putting
local settings module within code is not a good practice. Moreover, code
should not vary from one environment to another.

	Environment variables are not enough to manage settings. You can load
settings from environment variables, but you can also do it from files. Files
have many benefits (backup, version control...).

	Settings imported from external locations should (always) be validated.

	Application should expose the full list of settings they use.

	Documentation about applications settings should be auto-generated.

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

 	About django-confit

Alternatives and related projects

This document presents other projects that provide similar or complementary
functionalities. It focuses on differences with django-confit.

As a matter of fact, there are many projects related to configuration on
PyPI [https://pypi.python.org/pypi] [1] (as examples, search for config or django conf).

django-configglue

django-configglue [https://pypi.python.org/pypi/django-configglue] [2] inspired django-confit: it covers both loading and
validation of settings. django-configglue is tied to INI files. The schemas
look less powerful than those provided by colander [https://pypi.python.org/pypi/colander/] [3].

ConfigIt

ConfigIt [https://pypi.python.org/pypi/ConfigIt/] [4] can load settings from various formats.

References

	[1]	https://pypi.python.org/pypi

	[2]	https://pypi.python.org/pypi/django-configglue

	[3]	https://pypi.python.org/pypi/colander/

	[4]	https://pypi.python.org/pypi/ConfigIt/

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

 	About django-confit

License

Copyright (c) 2014, Benoît Bryon.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of django-confit nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

 	About django-confit

Authors & contributors

Maintainer: Benoît Bryon <benoit@marmelune.net>

Developers: https://github.com/benoitbryon/django-confit/graphs/contributors

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-confit 0.7.dev0 documentation

 	About django-confit

Changelog

This document describes changes between past releases. For information about
future releases, check milestones [https://github.com/benoitbryon/django-confit/milestones] [1] and Vision.

0.7 (unreleased)

	Nothing changed yet.

0.6 (2016-06-13)

	Feature #39 - Added support for Django up to 1.8.13 and 1.9.7.

0.5 (2015-12-15)

	Features #3, #31, #32 and bug #30 - Introduced support for Django 1.7 to 1.9
and Python 3.5.

0.4 (2015-12-11)

	Bug #28 - Configuration loaders work with unsupported versions, whereas
validation doesn’t (was requiring supported versions of Django).

0.3 (2015-03-23)

Upgrades: Django and Sphinx.

	Feature #26 - Added support for Django up to versions 1.5.12 and 1.6.11.

	Bug #25 - Fixed support of latest Sphinx version.

0.2 (2014-06-30)

	Feature #13 - Extended support for Django from 1.5 to 1.5.8 and from 1.6 to
1.6.5.

	Feature #16 - Added schema for django-pimpmytheme settings.

	Bug #15 - DjangoSettingsSchema.TEMPLATE_LOADERS now accepts either strings or
tuples (was “accepts only strings”), as specified in Django’s settings
reference documentation.

0.1 (2014-04-21)

Proof of concept.

	Introduced configuration schemas, using Colander.

	Implemented configuration schema for Django 1.5.5 and Django 1.6.2.

	Implemented configuration schema for some third-party libraries:
django-pipeline, django-debug-toolbar, django-nose and raven.

	Introduced configuration loading utilities.

	Feature #7 - Code repository contains a demo project, used for documentation
and tests.

	Feature #9 - Demo project shows how to register a custom configuration
schema.

	Feature #10 - Validate_settings() emits a warning if some directives used in
raw settings input are not in cleaned settings output. Helps figure out which
schemas are missing.

Notes & references

	[1]	https://github.com/benoitbryon/django-confit/milestones

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-confit 0.7.dev0 documentation

Contributing to django-confit

This document provides guidelines for people who want to contribute to the
project.

Create tickets

Please use django-confit bugtracker [https://github.com/benoitbryon/django-confit/issues] [1] before starting some work:

	check if the bug or feature request has already been filed. It may have been
answered too!

	else create a new ticket.

	if you plan to contribute, tell us, so that we are given an opportunity to
give feedback as soon as possible.

	Then, in your commit messages, reference the ticket with some
refs #TICKET-ID syntax.

Use topic branches

	Work in branches.

	Prefix your branch with the ticket ID corresponding to the issue. As an
example, if you are working on ticket #23 which is about contribute
documentation, name your branch like 23-contribute-doc.

	If you work in a development branch and want to refresh it with changes from
master, please rebase [http://git-scm.com/book/en/v2/Git-Branching-Rebasing] [2] or merge-based rebase [http://tech.novapost.fr/psycho-rebasing-en.html] [3], i.e. do not merge master.

Fork, clone

Clone django-confit repository (adapt to use your own fork):

git clone git@github.com:benoitbryon/django-confit.git
cd django-confit/

Usual actions

The Makefile is the reference card for usual actions in development
environment:

	Install development toolkit with pip [https://pypi.python.org/pypi/pip/] [4]: make develop.

	Run tests with tox [https://pypi.python.org/pypi/tox/] [5]: make test.

	Build documentation: make documentation. It builds Sphinx [https://pypi.python.org/pypi/Sphinx/] [6]
documentation in var/docs/html/index.html.

	Release django-confit project with zest.releaser [https://pypi.python.org/pypi/zest.releaser/] [7]: make release.

	Cleanup local repository: make clean, make distclean and
make maintainer-clean.

See also make help.

Notes & references

	[1]	https://github.com/benoitbryon/django-confit/issues

	[2]	http://git-scm.com/book/en/v2/Git-Branching-Rebasing

	[3]	http://tech.novapost.fr/psycho-rebasing-en.html

	[4]	https://pypi.python.org/pypi/pip/

	[5]	https://pypi.python.org/pypi/tox/

	[6]	https://pypi.python.org/pypi/Sphinx/

	[7]	https://pypi.python.org/pypi/zest.releaser/

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-confit 0.7.dev0 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 django_confit	

 	
 	
 django_confit.loaders	

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	django-confit 0.7.dev0 documentation

Index

 D

D

 	

 	django_confit.loaders (module)

 Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-confit 0.7.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014 - Benoît Bryon.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

