
django-confit Documentation
Release 0.6

Benoît Bryon

Sep 27, 2017

Contents

1 Example 3

2 Project status 5

3 Ressources 7

4 Contents 9
4.1 Install . 9
4.2 Configure . 10
4.3 Load configuration . 11
4.4 Validate schemas . 11
4.5 Write configuration schemas . 12
4.6 Builtin schemas . 13
4.7 Demo project . 13
4.8 About django-confit . 13
4.9 Contributing to django-confit . 16

5 Indices and tables 19

Python Module Index 21

i

ii

django-confit Documentation, Release 0.6

django-confit eases Django configuration management.

As a Django user, in order to configure a project:

• django-confit helps you load the settings wherever they are, whatever the format: Python modules, environment
variables, JSON, YAML...

• django-confit validates the settings, i.e. it tells you if some directive is missing, has wrong format...

As a Django library developer, in order to help your application’s users:

• you write configuration schemas for your application, using django-confit‘s toolkit and conventions.

• django-confit helps you document your application’s specific configuration.

As a non Django user, in order to deploy and run a Django-powered project:

• you write the configuration as you like, depending on your workflow and your provisioning toolkit. You know
the project can load them using django-confit.

• you expect applications to validate the configuration before they actually use it, and report errors with a readable
output.

Contents 1

django-confit Documentation, Release 0.6

2 Contents

CHAPTER 1

Example

In a project’s settings.py file, let’s load configuration from various locations:

import os

import django_confit

Load settings.
raw_settings = {}
raw_settings.update(django_confit.load_module('myproject.default_settings'))
raw_settings.update(django_confit.load_file(open('/etc/myproject.json')))
raw_settings.update(django_confit.load_mapping(os.environ, prefix='MYPROJECT_')

Update globals, because that's the way Django uses DJANGO_SETTINGS_MODULE.
globals().update(raw_settings)

Optionally, you can use builtin schemas to validate settings:

Validate and clean settings.
cleaned_settings = django_confit.validate_settings(raw_settings)

Update globals, because that's the way Django uses DJANGO_SETTINGS_MODULE.
globals().update(cleaned_settings)

Warning: At the moment, there is no builtin schema for latest Django>=1.7.

3

django-confit Documentation, Release 0.6

4 Chapter 1. Example

CHAPTER 2

Project status

Today, django-confit is a proof of concept:

• loading settings is nice and easy.

• validating configuration is easy... provided you have the schemas.

• creating configuration schemas is verbose. It uses colander1 which has nice features, but may not be the defini-
tive option.

• generating documentation from schemas is not implemented.

The main limitation is that, when you use validation, schemas are mandatory. If some configuration directive is
not registered in a schema, it will not be present in validation output. It means that, if you install a new third-party
Django application, you need the configuration schema for this application, else its settings will not pass validation.
So the most-wanted contribution is submitting configuration schemas for third-party applications.

Notice that this behaviour is a wanted feature. As django-confit author, I think libraries should always provide a
schema for the settings they use. I do not pretend django-confit should be THE answer. I just bet that, if schemas
were widely adopted by the Django community, configuration would be easier to manage.

django-confit does not pretend to be the ultimate configuration management app for Django. Its goal is to show how
some issues could be resolved, and to highlight the benefits. django-confit is a proposal. If you like its concepts, then
you can:

• use django-confit of course!

• discuss, spread the word, send feedback.

• improve code. Help around configuration schemas of third-party apps would be appreciated.

1 https://pypi.python.org/pypi/colander/

5

https://pypi.python.org/pypi/colander/
https://pypi.python.org/pypi/colander/

django-confit Documentation, Release 0.6

6 Chapter 2. Project status

CHAPTER 3

Ressources

• Documentation: https://django-confit.readthedocs.org

• PyPI page: https://pypi.python.org/pypi/django-confit/

• Code repository: https://github.com/benoitbryon/django-confit

• Bugtracker: https://github.com/benoitbryon/django-confit/issues

• Continuous integration: https://travis-ci.org/benoitbryon/django-confit

• Roadmap: https://github.com/benoitbryon/django-confit/milestones

7

https://django-confit.readthedocs.org
https://pypi.python.org/pypi/django-confit/
https://github.com/benoitbryon/django-confit
https://github.com/benoitbryon/django-confit/issues
https://travis-ci.org/benoitbryon/django-confit
https://github.com/benoitbryon/django-confit/milestones

django-confit Documentation, Release 0.6

8 Chapter 3. Ressources

CHAPTER 4

Contents

Install

django-confit is open-source, published under BSD license. See License for details.

If you want to install a development environment, you should go to Contributing to django-confit documentation.

Prerequisites

• Python1 2.7, 3.3, 3.4, 3.5

Warning: Django>=1.8 no longer supports Python 3.3, and Django<1.8 does not support Python 3.5. As an
example, django-confit can’t work with Django 1.7 and Python 3.5.

As a library

In most cases, you will use django-confit as a dependency of another project (typically a Django project or a Django
application). In such a case, you should add django-confit in your main project’s requirements. Typically in
setup.py:

from setuptools import setup

setup(
install_requires=[

'django-confit',
#...

]
...

)

1 https://www.python.org/

9

https://www.python.org/
https://www.python.org/

django-confit Documentation, Release 0.6

Then when you install your main project with your favorite package manager (like pip2), django-confit will automati-
cally be installed.

Standalone

You can install django-confit with your favorite Python package manager. As an example with pip2:

pip install django-confit

Check

Check django-confit has been installed:

python -c "import django_confit;print(django_confit.__version__)"

You should get django_confit‘s version.

Notes & references

See also:

Changelog

Configure

Once django-confit is installed, let’s configure it. This section describes directives related to django-confit in your
Django settings.

CONFIT_SCHEMAS

A dictionary of <APP>: <SCHEMA> where <APP> is in INSTALLED_APPS and <SCHEMA> is the Python dotted
path to a Schema class (or factory).

This configuration directive is mandatory only when you need configuration schemas that are not builtin django-confit.
See also the list of builtin schemas.

validate_settings() automatically loads schemas from INSTALLED_APPS setting. For each <APP> in
INSTALLED_APPS, it looks for:

1. CONFIT_SCHEMAS[<APP>],

2. django_confit.schemas.<APP>.ConfigurationSchema.

Simple example from default settings in django-confit demo project1:

CONFIT_SCHEMAS = {
'django_confit_demo': 'django_confit_demo.settings_schemas'

'.DjangoConfitDemoConfigurationSchema'
}

2 https://pypi.python.org/pypi/pip/
1 https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/default_settings.py

10 Chapter 4. Contents

https://pypi.python.org/pypi/pip/
https://pypi.python.org/pypi/pip/
https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/default_settings.py
https://pypi.python.org/pypi/pip/
https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/default_settings.py

django-confit Documentation, Release 0.6

Note: Early versions of django_confit tried to automatically load schemas, without having to register them:

1. settings_schemas.<APP>.ConfigurationSchema in current package, to allow local overrides

2. <APP>.settings_schemas.ConfigurationSchema, to allow third-party applications to manage
their own schema.

3. django_confit.schemas.<APP>.ConfigurationSchema to load django-confit‘s builtins.

The idea was nice. But it did not work. Because while trying to import <APP>.settings_schemas.
ConfigurationSchema, if import <APP> imports Django stuff, then a circular import can occur. That is a
pain to debug and a pain to fix.

With a registry, we import only things that are expected to work.

Notes & references

Load configuration

As a Django user, you manage configuration as you like: as Python modules, as JSON or YAML files, as environment
variables... Do whatever integrates best with your deployment workflow and your team.

As a non Django user (such as a member of the Ops team), you may appreciate putting configuration in configuration
files or in environment variables. Not in Python code.

This document explains how django-confit can help Django users load configuration from various locations and for-
mats.

load_mapping

load_module

load_file

Validate schemas

As a Django user, once you have loaded configuration, you want to make sure it is valid. It is a must-have feature
when the configuration comes from various locations. Or when it has been written by several users.

As a non Django user (such as a member of the Ops team, who deploys and configure services), you do not want
to be prosecuted because you made a typo in configuration. You think applications should validate the configuration
before they actually use it, and report errors with a readable output.

This section explains how django-confit helps Django users validate configuration.

validate_settings

Low-level API

Use deserialize() method of Colander schemas: http://docs.pylonsproject.org/projects/colander/en/latest/
basics.html#deserialization

4.3. Load configuration 11

https://docs.pylonsproject.org/projects/colander/en/latest/api.html#colander.SchemaNode.deserialize
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html#deserialization
http://docs.pylonsproject.org/projects/colander/en/latest/basics.html#deserialization

django-confit Documentation, Release 0.6

Write configuration schemas

As a Django application developer, you want to expose configuration directives. You want to make sure your
application is well configured. As an example, you appreciate to mark some directives as required, and to provide
default values for optional ones. But you do not want to re-invent the wheel about validation.

As a Django user, you do not want to bother about application configuration schemas. You just want it loaded when
you register the application in INSTALLED_APPS.

This sections explains how to create with django-confit.

Create settings_schemas.ConfigurationSchema

See:

• colander’s documentation1

• django-confit’s builtin schemas2

Simple example from custom schemas in django-confit demo project3:

"""Custom configuration schema(s)."""
import colander

class DjangoConfitDemoConfigurationSchema(colander.MappingSchema):
CONFITDEMO_HELLO = colander.SchemaNode(

colander.String(),
missing=colander.required,
default='',

)

Warning: In django-confit code, you will see some hacks around versions of applications. Yes, they are hacks.
They are necessary because from the django-confit point of view, we do not know which version of the application
is actually installed. So we have to write conditionals in order to support them as well as possible... But it is a true
pain.

Just imagine the schema lives within the third-party application itself... As a consequence:

• one schema is enough. No need to manage concurrent schemas. The one for the current version is enough.

• the schema is updated along the application. It is part of the application’s release process.

• as an user, you do not have to find or write a schema for the application. There is an official one! You install
the app, you get the schema!

Register your schema

In a project or a third-party application, register schemas in settings.CONFIT_SCHEMAS. See Configure.

In django-confit itself, make sure the schema can be loaded with django_confit.schemas.<APP>.
ConfigurationSchema.

1 http://docs.pylonsproject.org/projects/colander
2 https://github.com/benoitbryon/django-confit/tree/master/django_confit/schemas
3 https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/settings_schemas.py

12 Chapter 4. Contents

http://docs.pylonsproject.org/projects/colander
https://github.com/benoitbryon/django-confit/tree/master/django_confit/schemas
https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/settings_schemas.py
http://docs.pylonsproject.org/projects/colander
https://github.com/benoitbryon/django-confit/tree/master/django_confit/schemas
https://github.com/benoitbryon/django-confit/blob/master/demo/django_confit_demo/settings_schemas.py

django-confit Documentation, Release 0.6

Notes & references

Builtin schemas

Here is the list of configuration schemas implemented as part of django-confit. They are schemas that will automati-
cally be loaded.

• Django is supported

• django-debug-toolbar

• django-nose

• django-pimpmytheme

• django-pipeline

• raven

Note: Maintaining schemas for third-party applications is hard! Any help would be welcome, as an example:

• report bugs ;

• improve existing schemas (smarter validation) ;

• watch upgrades, support several versions.

If you are a library developer and you like django-confit, the best thing you can do is to distribute your app’s schema
inside your app! So that you maintain the schema along with your application, and django-confit does not have to deal
with multiple versions (given a version of your app, there is only one valid schema for your app, and it lives within
your app).

Demo project

Demo folder in project’s repository1 contains a Django project to illustrate django-confit usage.

Notes & references

About django-confit

This section is about django-confit project itself.

Vision

django-confit has been created with the following concepts in mind:

• Local configuration should not live in code. Altering sys.path or putting local settings module within code
is not a good practice. Moreover, code should not vary from one environment to another.

• Environment variables are not enough to manage settings. You can load settings from environment variables,
but you can also do it from files. Files have many benefits (backup, version control...).

1 https://github.com/benoitbryon/django-confit/tree/master/demo/

4.6. Builtin schemas 13

https://docs.djangoproject.com/en/stable/ref/settings/
http://django-debug-toolbar.readthedocs.org/en/latest/configuration.html
https://pypi.python.org/pypi/django-nose/
https://pypi.python.org/pypi/django-pimpmytheme/
http://django-pipeline.readthedocs.org/en/latest/configuration.html
http://raven.readthedocs.org/en/latest/integrations/django.html
https://github.com/benoitbryon/django-confit/tree/master/demo/
https://github.com/benoitbryon/django-confit/tree/master/demo/

django-confit Documentation, Release 0.6

• Settings imported from external locations should (always) be validated.

• Application should expose the full list of settings they use.

• Documentation about applications settings should be auto-generated.

Alternatives and related projects

This document presents other projects that provide similar or complementary functionalities. It focuses on differences
with django-confit.

As a matter of fact, there are many projects related to configuration on PyPI1 (as examples, search for config or
django conf).

django-configglue

django-configglue2 inspired django-confit: it covers both loading and validation of settings. django-configglue is tied
to INI files. The schemas look less powerful than those provided by colander3.

ConfigIt

ConfigIt4 can load settings from various formats.

References

License

Copyright (c) 2014, Benoît Bryon. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of django-confit nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

1 https://pypi.python.org/pypi
2 https://pypi.python.org/pypi/django-configglue
3 https://pypi.python.org/pypi/colander/
4 https://pypi.python.org/pypi/ConfigIt/

14 Chapter 4. Contents

https://pypi.python.org/pypi
https://pypi.python.org/pypi/django-configglue
https://pypi.python.org/pypi/colander/
https://pypi.python.org/pypi/ConfigIt/
https://pypi.python.org/pypi
https://pypi.python.org/pypi/django-configglue
https://pypi.python.org/pypi/colander/
https://pypi.python.org/pypi/ConfigIt/

django-confit Documentation, Release 0.6

Authors & contributors

Maintainer: Benoît Bryon <benoit@marmelune.net>

Developers: https://github.com/benoitbryon/django-confit/graphs/contributors

Changelog

This document describes changes between past releases. For information about future releases, check milestones1 and
Vision.

0.6 (2016-06-13)

• Feature #39 - Added support for Django up to 1.8.13 and 1.9.7.

0.5 (2015-12-15)

• Features #3, #31, #32 and bug #30 - Introduced support for Django 1.7 to 1.9 and Python 3.5.

0.4 (2015-12-11)

• Bug #28 - Configuration loaders work with unsupported versions, whereas validation doesn’t (was requiring
supported versions of Django).

0.3 (2015-03-23)

Upgrades: Django and Sphinx.

• Feature #26 - Added support for Django up to versions 1.5.12 and 1.6.11.

• Bug #25 - Fixed support of latest Sphinx version.

0.2 (2014-06-30)

• Feature #13 - Extended support for Django from 1.5 to 1.5.8 and from 1.6 to 1.6.5.

• Feature #16 - Added schema for django-pimpmytheme settings.

• Bug #15 - DjangoSettingsSchema.TEMPLATE_LOADERS now accepts either strings or tuples (was “accepts
only strings”), as specified in Django’s settings reference documentation.

0.1 (2014-04-21)

Proof of concept.

• Introduced configuration schemas, using Colander.

• Implemented configuration schema for Django 1.5.5 and Django 1.6.2.

• Implemented configuration schema for some third-party libraries: django-pipeline, django-debug-toolbar,
django-nose and raven.

1 https://github.com/benoitbryon/django-confit/milestones

4.8. About django-confit 15

mailto:benoit@marmelune.net
https://github.com/benoitbryon/django-confit/graphs/contributors
https://github.com/benoitbryon/django-confit/milestones
https://github.com/benoitbryon/django-confit/milestones

django-confit Documentation, Release 0.6

• Introduced configuration loading utilities.

• Feature #7 - Code repository contains a demo project, used for documentation and tests.

• Feature #9 - Demo project shows how to register a custom configuration schema.

• Feature #10 - Validate_settings() emits a warning if some directives used in raw settings input are not in cleaned
settings output. Helps figure out which schemas are missing.

Notes & references

Contributing to django-confit

This document provides guidelines for people who want to contribute to the project.

Create tickets

Please use django-confit bugtracker1 before starting some work:

• check if the bug or feature request has already been filed. It may have been answered too!

• else create a new ticket.

• if you plan to contribute, tell us, so that we are given an opportunity to give feedback as soon as possible.

• Then, in your commit messages, reference the ticket with some refs #TICKET-ID syntax.

Use topic branches

• Work in branches.

• Prefix your branch with the ticket ID corresponding to the issue. As an example, if you are working on ticket
#23 which is about contribute documentation, name your branch like 23-contribute-doc.

• If you work in a development branch and want to refresh it with changes from master, please rebase2 or merge-
based rebase3, i.e. do not merge master.

Fork, clone

Clone django-confit repository (adapt to use your own fork):

git clone git@github.com:benoitbryon/django-confit.git
cd django-confit/

Usual actions

The Makefile is the reference card for usual actions in development environment:

• Install development toolkit with pip4: make develop.

1 https://github.com/benoitbryon/django-confit/issues
2 http://git-scm.com/book/en/v2/Git-Branching-Rebasing
3 http://tech.novapost.fr/psycho-rebasing-en.html
4 https://pypi.python.org/pypi/pip/

16 Chapter 4. Contents

https://github.com/benoitbryon/django-confit/issues
http://git-scm.com/book/en/v2/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
http://tech.novapost.fr/psycho-rebasing-en.html
https://pypi.python.org/pypi/pip/
https://github.com/benoitbryon/django-confit/issues
http://git-scm.com/book/en/v2/Git-Branching-Rebasing
http://tech.novapost.fr/psycho-rebasing-en.html
https://pypi.python.org/pypi/pip/

django-confit Documentation, Release 0.6

• Run tests with tox5: make test.

• Build documentation: make documentation. It builds Sphinx6 documentation in var/docs/html/index.html.

• Release django-confit project with zest.releaser7: make release.

• Cleanup local repository: make clean, make distclean and make maintainer-clean.

See also make help.

Notes & references

5 https://pypi.python.org/pypi/tox/
6 https://pypi.python.org/pypi/Sphinx/
7 https://pypi.python.org/pypi/zest.releaser/

4.9. Contributing to django-confit 17

https://pypi.python.org/pypi/tox/
https://pypi.python.org/pypi/Sphinx/
https://pypi.python.org/pypi/zest.releaser/
https://pypi.python.org/pypi/tox/
https://pypi.python.org/pypi/Sphinx/
https://pypi.python.org/pypi/zest.releaser/

django-confit Documentation, Release 0.6

18 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

Notes & references

19

django-confit Documentation, Release 0.6

20 Chapter 5. Indices and tables

Python Module Index

d
django_confit.loaders, 11

21

django-confit Documentation, Release 0.6

22 Python Module Index

Index

D
django_confit.loaders (module), 11

23

	Example
	Project status
	Ressources
	Contents
	Install
	Configure
	Load configuration
	Validate schemas
	Write configuration schemas
	Builtin schemas
	Demo project
	About django-confit
	Contributing to django-confit

	Indices and tables
	Python Module Index

